If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10k^2+8k+1=0
a = 10; b = 8; c = +1;
Δ = b2-4ac
Δ = 82-4·10·1
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{6}}{2*10}=\frac{-8-2\sqrt{6}}{20} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{6}}{2*10}=\frac{-8+2\sqrt{6}}{20} $
| 2(x+5)+x=8 | | 4x+100=7x+400 | | 0=-16t^2+28 | | 180=16x+4 | | 40x-24=-18x-24 | | (2x+3)+(4x+5)=23 | | 11y+6=64 | | 3v+43=83-5v | | (1.5c+6)-2c=-9 | | 2x+12=3x+54 | | 2=4+65t-16t^2 | | ((7/8)n)-3=((5/8)n)+12 | | 2x+127=3x+54 | | (7/8)n)-3=(5/8)n)+12 | | 0.11-0.01(x+2)=-0.02(3-x | | 1x-10=71 | | (7/8)n-3=(5/8)n+12 | | 15-11/12x=68/12 | | 1.4x+.32=32=1.1x+.83 | | 13z-13=12z-12 | | 15-11/12x=8.6 | | 15-11/12x=87/12 | | 6x-30/5=-30 | | -3x-6x+18=-12+3 | | 2(x+1)=3(x-4 | | 10k+5=5k+20 | | 3(-3m+3)+m=33 | | 2(3x+7)=14+5x | | 10x+5=13x+14 | | 0.4(x+10)+0.6x=2 | | .25(60)+0.1x=0.15(60+x) | | 0.25(60)+0.1x=12000 |